
Learning SAT Encodings for Individual
Constraints

Felix Ulrich-Oltean[0000−0001−5162−5826]

Supervisors: Peter Nightingale and James Cussens

Department of Computer Science
University of York, UK, YO10 5DD

https://www.cs.york.ac.uk

Abstract. One popular strategy for solving Constraint Satis-
faction Problems (CSPs) is to encode them into Boolean (SAT)
formulae and then solve them using a SAT solver. We illustrate
the process of encoding to SAT, discuss the notion of a “best”
encoding and explore how to make fine-grained choices when
encoding unseen problem instances. We present initial results
which support our intention to train a machine learning algo-
rithm to select encodings for individual constraints in a CSP
instance.

Keywords: Constraint Programming · Combinatorial Satis-
faction · SAT Encodings · Portfolio Systems · Pseudo-Boolean
Constraints

1 Introduction

Constraint Satisfaction Problems (CSPs) can model many interesting
and important real-life problems ranging from formal verification of
hardware systems to allocation of resources, multi-criteria scheduling
and layout optimisation. One popular and increasingly powerful way
of solving a CSP is by translating (encoding) it into an instance of
the Boolean Satisfiability Problem (SAT) – a propositional formula for
which a satisfiying assignment of Boolean variables can either be found
or not.

The overall goal of this project is to predict the “best” SAT encod-
ing choice for each constraint in a given CSP instance. We begin by
investigating which features of a CSP favour certain encodings and how

https://www.cs.york.ac.uk


2 F. Ulrich-Oltean

those features may be efficiently extracted or calculated. The intention
is to train a machine learning model to make the choice of encoding and
to evaluate this approach against choosing the accepted state-of-the-art
encoding for each constraint class.

This paper is an introduction to my PhD topic and consists of:

– an overview of some key concepts and relevant literature covering
CSPs, SAT and portfolio ML systems in this arena (§ 2),

– a description of some early experiments to establish the viability of
the research (§ 3),

– an outline of the intended next steps, and an assessment of the
challenges to be addressed in the course of this research (§ 4)

2 Background

2.1 Constraint Satisfaction Problems

A CSP consists of a set of variables and their associated domains, along
with a set of constraints specifying what combinations of values are
allowed for subsets of the variables. A classic example often cited is
the Sudoku puzzle, traditionally with 81 variables, each with integer
domain [1 . . . 9]; the constraints in Sudoku demand that no variables in
the same row, column or mini-square can be assigned the same value.

Although constraints can be defined by explicitly enumerating the
allowed combinations of values, it is often useful to express the con-
straints logically, for example requiring that a set of variables be as-
signed distinct values, as in the previous paragraph. Many languages
exist which give the user the ability to describe CSPs as a high-level,
human-readable model ; some examples are OPL [13] , the MiniZinc lan-
guage and its lower-level “compiled” version FlatZinc [9], XCSP3 with
its associated API JvCSP3 [3] and the Essence Prime language used by
Savile Row [10] along with its higher level relative Essence [5].

2.2 Savile Row and Essence Prime

Savile Row is a constraint modelling assistant [10] which takes a problem
description in Essence Prime and tailors an output model to any one
of several backend solvers, carrying out various reformulations, both to
improve the model where possible and to take advantage of the target



Learning SAT Encodings for Individual Constraints 3

Listing 1.1. Sudoku model in Essence Prime

1 letting RNG be domain int (1..9)

2 given clues: matrix indexed by [RNG ,RNG] of int (0..9)

3 find M: matrix indexed by [RNG ,RNG] of RNG

4 such that

5 forAll row ,col: RNG .

6 clues[row ,col ]!=0 -> M[row ,col]= clues[row ,col],

7 forAll row: RNG . allDiff(M[row ,..]),

8 forAll col: RNG . allDiff(M[..,col]),

9 forAll i,j: int(1,4,7) .

10 allDiff ([M[k,l] | k: int(i..i+2), l: int(j..j+2)])

solver’s strengths. Designed as a research tool, it provides many options
for how the translation is done. Its output means a user can benefit
from advances in solvers of different flavours, e.g. CP, SMT, SAT. Of
particular interest is the ability to manually choose which SAT encoding
is used for different classes of constraint in the model.

Listing 1.1 shows an example of how Sudoku could be modelled
for Savile Row using Essence Prime1. Note that the given declaration
allows instance-specific values to be set outside of the model file which
describes the problem class – in this case, the clues matrix holding
the initial values on the board (line 2). Lines 5 and 6 ensure that the
given numbers are maintained in the final grid; lines 7-10 enforce the
uniqueness of numbers in the three contexts of Sudoku (row, column,
mini-square).

2.3 Encoding CSP to SAT

Any (finite-domain) CSP can be translated into the Boolean Satisfia-
bility Problem (SAT). The simplicity of SAT, especially in CNF form2

has led to a panoply of SAT-solvers with impressive and ever-improving

1 This example is adapted from the Essence Prime manual [11].
2 Boolean formulae in Conjunctive Normal Form are structured as a con-

junction of clauses; each clause is a disjunction of literals; each literal is a
Boolean variable or its negation.



4 F. Ulrich-Oltean

performance. We can continue to benefit from these improvements with
our strategy of solving CSPs by encoding to SAT. Of course other types
of constraint solver are also improving but it has been shown that trans-
lating to SAT can give the best performance for some problem instances.
In fact, PicatSAT [15] (which uses a SAT-solver) was the winner of the
XCSP2019 constraint solver competition [1].

Many schemes exist for encoding CSPs to SAT; of particular interest
in this project are encodings for constraints with arbitrary arity, such
as cardinality constraints, pseudo-Boolean constraints and at-most-one
constraints. For each type of constraint there are often several alterna-
tive encodings with competing advantages in terms of the size of the
formula produced, propagation strength or suitability for being com-
bined with other constraints.

To illustrate the concept, we consider the pseudo-Boolean sum con-
straint (PBC), whose scope is the Boolean variables x1 . . . xn with as-
sociated weights q1 . . . qn and which requires that

∑
xiqi ≤ K. This

type of constraint is very common in many settings including resource
allocation and timetabling.

One example of a PBC encoding is the Generalized Totalizer [7],
which uses a tree to represent the possible totals of the terms on the left
side of the inequality. Fig. 1 illustrates this structure. Notice that each
term is represented as a leaf node with a variable whose name carries the
weight of the term. Each non-leaf node has a Boolean variable for every
possible non-zero total, culminating at the root with all the possible
totals (excepting any totals that exceed K, all of which are represented
by a value of K + 1 and shown in bold in Fig. 1).

a1, a2, a3, a5, a6, a7,a8

b2, b3, b5

d2 e3

c1, c5, c6

f5 g1

Fig. 1. Generalized Totalizer tree for 2x1 + 3x2 + 5x3 + x4 ≤ 7

In the SAT formula, clauses are introduced to “turn on” a variable
in the parent node if the appropriate child variables are on, for example



Learning SAT Encodings for Individual Constraints 5

(¬d2 ∨ ¬e3 ∨ b5) ensures that b5 is on if d2 and e3 are on. The overall
PBC is satisfied if the K + 1 variable remains “off”; in our example the
clause would be (¬a8).

Alongside the encoding presented above for PBCs, some alternatives
include: BDD (based on binary decision diagrams), sequential weight
counters (based on a set of logical adders) and polynomial watchdog
(using the binary representation of coefficients). Bofill et al. describe
and evaluate the relative merits of the encodings for different problem
types in [4].

2.4 Selection

The application of machine learning algorithms to inform decisions in
the process of solving CSPs is well established, not least in relation to
the use of SAT solvers. Portfolio solvers such as SATZilla [14] choose
the solver based on features of the SAT problem instance. The Pro-
teus portfolio solver [6] uses three stages: first it considers whether to
use a specialised CSP solver or to translate the problem to SAT, then
chooses which SAT solver to employ, and finally which encoding to use.
A comprehensive survey of portfolio approaches is given by Kotthoff in
[8]. Soos et al. [12] use supervised learning techniques at a much lower
level inside a SAT solver in order to support decision making in “tasks
such as branching, clause memory management, and restarting” – their
stated intention being to shed light on the inner workings of SAT solvers
which are often used as black boxes.

3 First Steps

The initial aim is to find out how much difference the choice of encod-
ing makes to solving times. When new encodings are studied and pub-
lished, the benchmark problem instances used to gauge performance
are selected in many different ways but usually authors are keen to
show where their contribution has a positive impact on performance.
We intend to study the performance of encodings in an objective way
to answer empirically the question: For a given type of constraint, is
one encoding always the best choice or does it depend on features of the
instance?

We have begun by considering small CSPs involving a single class
of constraint, intending to extend this in order to identify



6 F. Ulrich-Oltean

– features of the instance which affect performance
– whether the best-performing encoding changes as those features

vary, and
– whether any such findings persist when other constraints are present

in a CSP.

The first constraint class considered is the PBC – this constraint has
several encodings available (Savile Row provides support for five in the
main release and more in development). It is also fairly straightforward
to create an instance generator where we can vary many features.

The first model we wrote for testing just contained two such PBCs
which were mutually exclusive, giving an unsatisfiable problem so as
to exhaust the search space. We created problem instances with dif-
ferent numbers of variables and different configurations of coefficients
(weights) for the variables, varying the amount of clustering and the
size of the coefficients relative to the upper bound K.

In Fig. 2 we see the solving times for different amounts of cluster-
ing; c = 0 means the coefficients are randomly spread, whereas c = 1
means that each decision variable xi has the same weight as some other
variables, i.e. all weights occur in clusters of shared values. As more
clustering occurs, the relative performance of the encodings varies sig-
nificantly.

These initial findings suggest that there could be overall performance
gains to be made by selecting the encoding based on features of the
problem instance.

4 Future Direction

4.1 Intentions

We plan to conduct similar investigations with other constraints in order
to build up a profile of performance. We will then investigate whether
the presence of other constraints in a CSP affects the ranking of en-
codings by performance, working towards an understanding of which
combinations of choices perform best.

When it comes to designing a translation to SAT, there is a ten-
sion between encoding size and propagation strength. Further consid-
erations may include the time complexity of the encoding algorithm.
There are also situations where an encoding can combine two types of



Learning SAT Encodings for Individual Constraints 7

●

●

●

●Timed out

●

●

●

●Timed out

●

●

●Timed out

0 0.5 1

16 32 64 128 16 32 64 128 16 32 64 128

0.1

1.0

10.0

100.0

1000.0

Number of variables

S
ol

ve
 ti

m
e 

(s
)

encoding ● ggt gpw mdd swc tree

Performance by clustering

Fig. 2. Timings for different amounts of clustering

constraints very efficiently, for example the combination of At-Most-
One with Pseudo-boolean in [2].

We envisage the machine learning algorithm combining all factors
outlined above to decide the encoding for each constraint. One hope is
that these investigations yield useful insights that can contribute to the
understanding and development of SAT encodings.

4.2 Challenges

In theory it is possible to investigate countless variations in CSPs, but
there are clear resource constraints during a PhD programme. It is
also important to source meaningful, realistic and relevant (industrial)
problem instances. Good quality data is vital in training ML systems.
Yet another challenge is the fact that each individual experiment is



8 F. Ulrich-Oltean

time-consuming so gathering enough experimental data to train on may
be difficult.

Acknowledgments

This work is supported by grant EP/R513386/1 from the UK Engi-
neering and Physical Sciences Research Council. I am grateful to my
supervisors for their support and guidance, and in particular to Peter
Nightingale for the initial idea.

References

1. 2019 XCSP3 Competition (2019), http://www.cril.univ-artois.fr/

XCSP19/

2. Ansótegui, C., Bofill, M., Coll, J., Dang, N., Esteban, J.L., Miguel, I.,
Nightingale, P., Salamon, A.Z., Suy, J., Villaret, M.: Automatic detection
of at-most-one and exactly-one relations for improved SAT encodings of
pseudo-boolean constraints. In: International Conference on Principles
and Practice of Constraint Programming. pp. 20–36. Springer (2019).
https://doi.org/10.1007/978-3-030-30048-7

3. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C., Rous-
sel, O.: XCSP3 and its ecosystem. Constraints (Feb 2020).
https://doi.org/10.1007/s10601-019-09307-9

4. Bofill, M., Coll, J., Suy, J., Villaret, M.: SAT encodings of pseudo-
boolean constraints with at-most-one relations. In: International Con-
ference on Integration of Constraint Programming, Artificial In-
telligence, and Operations Research. pp. 112–128. Springer (2019).
https://doi.org/10.1007/978-3-030-19212-9

5. Frisch, A.M.: The Design of ESSENCE: A Constraint Language for Spec-
ifying Combinatorial Problems. In: Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence. pp. 80–87. Hyderabad
(2007)

6. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: A Hier-
archical Portfolio of Solvers and Transformations. In: Simonis, H. (ed.)
Integration of AI and OR Techniques in Constraint Programming. pp.
301–317. Lecture Notes in Computer Science, Springer International Pub-
lishing, Cham (2014). https://doi.org/10.1007/978-3-319-07046-9

7. Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for
pseudo-boolean constraints. In: Pesant, G. (ed.) Principles and Practice
of Constraint Programming. pp. 200–209. Springer International Pub-
lishing, Cham (2015), https://arxiv.org/pdf/1507.05920

http://www.cril.univ-artois.fr/XCSP19/
http://www.cril.univ-artois.fr/XCSP19/
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/978-3-030-19212-9
https://doi.org/10.1007/978-3-319-07046-9
https://arxiv.org/pdf/1507.05920


Learning SAT Encodings for Individual Constraints 9

8. Kotthoff, L.: Algorithm selection for combinatorial search problems: A
survey. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan,
B., Pedreschi, D. (eds.) Data Mining and Constraint Programming: Foun-
dations of a Cross-Disciplinary Approach, pp. 149–190. Springer Inter-
national Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-
50137-6

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C.
(ed.) Principles and Practice of Constraint Programming – CP 2007. pp.
529–543. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7

10. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel,
I., Spracklen, P.: Automatically improving constraint models
in Savile Row. Artificial Intelligence 251, 35–61 (Oct 2017).
https://doi.org/10.1016/j.artint.2017.07.001

11. Nightingale, P., Rendl, A.: Essence’ Description. ArXiv abs/1601.02865
(2016)

12. Soos, M., Kulkarni, R., Meel, K.S.: CrystalBall: Gazing in the black box
of SAT solving. In: International Conference on Theory and Applications
of Satisfiability. vol. 22, pp. 371–387 (2019). https://doi.org/10.1007/978-
3-030-24258-9

13. Van Hentenryck, P.: The OPL Optimization Programming Language.
MIT Press, Cambridge, MA, USA (1999)

14. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-
based algorithm selection for SAT. Journal of artificial intelligence re-
search 32, 565–606 (2008). https://doi.org/10.1613/jair.2490

15. Zhou, N.F., Kjellerstrand, H.: The Picat-SAT Compiler. In: Gavanelli,
M., Reppy, J. (eds.) Practical Aspects of Declarative Languages. pp. 48–
62. Lecture Notes in Computer Science, Springer International Publish-
ing, Cham (2016). https://doi.org/10.1007/978-3-319-28228-2 4

https://doi.org/10.1007/978-3-319-50137-6
https://doi.org/10.1007/978-3-319-50137-6
https://doi.org/10.1007/978-3-540-74970-7
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/978-3-030-24258-9
https://doi.org/10.1007/978-3-030-24258-9
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/978-3-319-28228-2_4

	Learning SAT Encodings for Individual Constraints

