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Motivation



Motivation

Why SAT?



E�ective Back-end Solver

Figure Screenshot of MiniZinc2021 Challenge results from https://www.minizinc.org/challenge.html 2
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E�ective Back-end Solver

Figure Screenshot of XCSP Challenge 2019 results from https://xcsp.org/competitions/
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“Free” Gains from an Improving Back-end
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SAT Competition Winners on the SC2020 Benchmark Suite
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data produced by Armin Biere and Marijn Heule

Figure Instances from the 2020 SAT Competition solved by historical winning solvers. Plot from
http://fmv.jku.at/kissat/
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Motivation

Portfolio approaches



Portfolios

• An expert’s skill: right tool for the job
• Winner doesn’t take it all, a complementary portfolio can perform

better, especially when the input is varied
• SAT Competition banned portfolio-based solvers
• SunnyCP, Proteus, MeSAT, ...
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Project Aim

Can we use ideas from portfolio approaches to
learn to select good SAT encodings of constraints

for new CSP instances?

We focus on pseudo-Boolean / linear integer constraints in this work.
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Encoding to SAT



Savile Row, Essence Prime, SAT

Figure Left: an Essence Prime model for a simple knapsack problem. Right: the beginning of the
corresponding Boolean SAT formula as output by Savile Row [Nightingale et al., 2017].
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An Example Encoding Scheme

Figure Diagrams and clauses for the “Generalized Totalizer” from [Bofill et al., 2019] 8



What makes a good encoding?

Figure Extract from performance summary in [Bofill et al., 2019] 9



Learning



Learning

Experimental Setup



Overview

problem instances:
.eprime models,

.param files

Savile Row
extract features

Savile Row
solve with SAT

Savile Row
+ fzn2feat

feature ex-
traction times

features

solving times clean

cleaned dataset

train/test split

training set

test set

trained
classifiers

make portfolio,
train classifiers

predict and vote

predicted
encodings

calculate
reference and

prediction times

aggregated
prediction data

for analysis

for each splitting method and setup,
perform 50 cycles with di�erent seeds

Figure An overview of the steps involved in our experimental investigation. The boxes with solid borders
represent data; the grey boxes represent processes.
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The corpus

Problem Class # PBs LIs

killerSudoku2 50 1811.2 129.9
carSequencing 49 435.7 0.0
knights 44 170.5 336.9
langford 39 146.2 0.0
opd 38 21.7 74.8
knapsack 30 1.0 1.0
sonet2 24 10.0 1.0
immigration 23 0.0 1.0
bibd-implied 22 410.6 0.0
handball7 20 705.0 1206.0
mrcpsp-pb 20 90.0 45.7
n queens 20 1593.0 0.0
efpa 20 156.6 0.0
bibd 19 338.7 0.0
n queens2 16 309.0 0.0
briansBrain 16 0.0 1.0
life 16 0.0 438.9

Problem Class # PBs LIs

molnars 15 0.0 4.0
bpmp 14 14.0 0.0
blackHole 11 202.2 0.0
pegSolitaireTable 8 59.9 0.0
pegSolitaireState 8 59.9 0.0
pegSolitaireAction 8 59.9 0.0
peaceArmyQueens1 7 0.0 1008.0
peaceArmyQueens3 6 0.0 4.0
golomb 6 59.2 38.7
quasiGrp5Idem 6 586.7 0.0
magicSquare 6 118.3 34.0
quasiGrp7 6 410.7 0.0
quasiGrp6 6 410.7 0.0
quasiGrp4NonIdem 4 1067.5 208.0
quasiGrp3NonIdem 4 1067.5 208.0
quasiGrp5NonIdem 4 389.0 0.0
quasiGrp4Idem 4 416.0 208.0

Problem Class # PBs LIs

bacp 4 0.0 25.0
quasiGrp3Idem 4 458.0 208.0
waterBucket 4 0.0 46.0
discreteTomography 2 240.0 0.0
solitaire battleship 2 72.0 16.0
plotting 1 1.0 28.0
nurse 1 27.0 42.0
grocery 1 0.0 2.0
farm puzzle1 1 0.0 2.0
diet 1 0.0 6.0
sokoban 1 0.0 24.0
sonet 1 3.0 1.0
contrived 1 0.0 4.0
sportsScheduling 1 166.0 64.0
tickTackToe 1 6.0 14.0
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Obtaining Timings

• Savile Row has MDD, GSWC, GGPW, GGT + Tree encodings; we turn on
AMO detection

• 5 choices for LI x 5 choices for PBs = 25 configurations
• each instance run with each configuration 5 times (to average out SAT

solver randomness) and the median time taken
• timeouts set to 1 hour each for Savile Row and the SAT solver (Kissat)
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Learning

Training



Classification

Not an “ordinary” classification task - not every misclassification is the
same. We tried some things to address this:

• samples weighted according to “hardness”
• custom loss for hyperparameter tuning cross-validation
• pairwise training and voting inspired by [Lindauer et al., 2015]
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Portfolio
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Figure The virtual best (VB) PAR2 run-time on our corpus for all portfolio sizes as a multiple of the overall VB
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Features

f2f from fzn2feat [Amadini et al., 2014]: 95 generic CSP instance
features relating to constraints, variables, and their domains.
Extracted by outputting FlatZinc from Savile Row, then
running fzn2feat

f2fsr an attempt to extract the same features from Savile Row’s
internal model just before encoding to SAT

lipb new pb-related features
combi f2fsr and sumpb combined
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Features relating to PB and LI constraints

Number of (PB or LI) constraints No. of distinct values / no. of coe�cients
Number of terms Number of At-Most-One groups (AMOGs)
Sum of coe�cients Mean size of AMO group
Minimum coe�cient Mean AMOG size / number of terms
Maximum coe�cient Mean maximum coe�cient size in AMOGs
Median coe�cient Skew of maximum coe�cient in AMOGs
IQR of coe�cients Upper limit (k)
Coe�cients’ quartile skew k × number of AMOGs
Number of distinct coe�cient values
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Results and Findings

Evaluating performance



PAR2 Performance for our ML Setups

Reference Times

Split VB SB Def VW

by instance 1.00 3.55 4.61 9.75
by class 1.00 5.06 4.53 9.49

Predicted Times

Split by instance Split by class

Setup f2f f2fsr lipb combi f2f f2fsr lipb combi

pairwise combined 2.62 2.57 2.41 2.51 3.88 3.92 3.75 3.90
pairwise combined + sw 2.49 2.46 2.28 2.37 3.70 4.12 3.86 3.52
pairwise combined + cl 2.62 2.43 2.36 2.41 3.97 3.98 3.58 3.66
pairwise combined + sw + cl 2.45 2.37 2.18 2.23 4.24 3.66 3.56 3.53

single combined + sw + cl 2.43 2.43 2.33 2.36 4.23 4.43 3.89 3.74
pairwise separate + sw + cl 2.35 2.26 2.24 2.18 4.01 3.90 4.36 3.95

Table PAR2 runtimes including feature extraction, as a multple of the Virtual Best time
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Distribution of Runtimes and Timeouts
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Figure Prediction performance using di�erent featuresets against reference times. We show mean runtime
(left) and number of timeouts (right) per test set, when using our preferred setup (pairwise combined + sample
weights + custom loss).
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Comparison with AutoFolio

Reference Times

Split VB SB Def VW

by instance 1.00 10.14 18.60 41.41
by class 1.00 21.91 18.99 43.65

Predicted Times

Split by instance Split by class

Setup f2f f2fsr lipb combi f2f f2fsr lipb combi

pairwise combined + sw + cl 5.68 5.95 5.18 5.41 14.39 14.58 13.75 12.45
AutoFolio (1hr) 20.33 19.90 19.28 21.21 21.82 20.01 20.01 21.87
AutoFolio (2hrs) 20.01 18.79 19.48 18.33 22.99 25.19 17.17 21.57

Table PAR10 runtimes including feature extraction, as a multiple of the Virtual Best time

19



Results and Findings

Feature importance



Permutation Feature Importance

The Permutation Feature Importance of feature F is the extra time it
would take to run a test set based on encodings selected when column F
has its values permuted randomly across all rows in the test set.

• PFI is calculated at prediction time, rather than at training time, as
with impurity-based feature importance measures

• more appropriate at showing features which lead to predictions that
generalise better

• BUT importance can still be masked by another closely related
feature
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Feature Importances
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Figure Increase in PAR2 time for each permuted feature over 50 test sets. Top 20 features shown (by mean
importance). Outliers are not shown. Features beginning li or pb are from lipb; the other feature names
refer are generic instance features from combi.
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Conclusion



Findings and Future

Findings

• possible to make good predictions even for unseen classes
• generic features worked well, but constraint-specific features were

more useful and led to more robust predictions
• using pairwise classifiers, sample weighting and custom scoring can

address the issue of near-miss classifications

Future

• more balanced and diverse corpus
• consider other constraint types
• learn to set di�erent encodings for individual constraints within an

instance 22
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