
Learning SAT encodings

Felix Ulrich-Oltean

December 9, 2019

1

Script for Literature Review Seminar
Solving Problems by Searching for Truth: from the CSP to SAT via constraint
encodings

0.1 Setting the Scene

Scope of this seminar

My research is about Constraint Satisfaction Problems and in particular finding efficient
ways of expressing a CSP as an instance of the Boolean Satisfiability Problem.

To give you a little bit of context, I last studied at university in 2000 when I did my
Computer Science degree here at York. That means I’ve got a lot of catching up to do.

My focus early on in the PhD has been to begin to understand the key principles and
methods in the field, to consider the foundational contributions to the state of the art and
to get a sense of the direction of travel or the strands of enquiry generating considerable
research activity.

Today I will try to set out broadly my research context by referring to literature that
has helped me so far.

Constraint Satisfaction: Hands-on

As this is a seminar rather than a lecture, there is a little bit of thinking involved, if
you’re up for it.

Fill the Christmas baubles using the numbers 1 to 12 exactly once each, so that no
connected baubles have consecutive numbers AND every clique of 3 baubles has a sum of
no more than 20.

Figure 0.1: York the first time round

2

0.1. Setting the Scene

Figure 0.2: Christmas Tree Puzzle

Constraint Satisfaction In Real Life

Real-life applications are widespread, a few examples being:

• Scheduling or timetabling especially where several additional constraints exist. Cam-
bazard et al.[1] address the “post enrolment-based course timetabling problem” in
which students, lecturers and rooms are to be scheduled in a way which meets
both some hard constraints (i.e. requirements) and some soft constraints (desirable
features of a solution).

• Ansótegui et al. [2] feature the Multi-mode Resource-Constrained Project Schedul-
ing Problem (MRCPSP) which seeks to schedule a number of tasks in a project,
taking into account that tasks must obey a precedence ordering, use resources (which
may be renewable or exhaustible), and can be carried out in different “modes”. In
the same paper, the authors also tackle a version of the Nurse Scheduling Problem.

• In his “Boolean Satisfiability and Beyond” paper [3], Järvisalo reviews the use of
SAT in computational argumentation as well as in a variety of machine learning ap-
plications, such as structure learning of Bayesian networks, as described for example
in [4].

• I came across an interesting application to Master-Key Lock systems in Martin
Hořeňovský’s Masters thesis [5].

• Many other applications exist such as model checking (or formal verification of
systems) and cryptographic schemes which rely on the hardness of Boolean Satis-
fiability. A lot of the papers I have read begin with a listing of the applications of
the CSP.

Formal definition

Having attempted a toy CSP ourselves, and seen some of the industrial applications, let’s
try to give a formal definition.

A Constraint Satisfaction Problem (CSP) consists of:

• A set of variables X = {X1, . . . , Xn}

• A set of domains corresponding to each variable D = {D1, . . . , Dn}

3

0.1. Setting the Scene

Figure 0.3: Mission control
for Apollo 13 (the Holly-
wood version) Figure 0.4: Nurses’ sched-

ule on a ward

Figure 0.5: A key and lock
mechanism

• A set of constraints, each concerned with a subset of the variables and imposing a
relation:

C = {〈Sj, Rj〉|Sj ⊆ X,Rj ⊆ {D(Sj,1)×, . . . ,×D(Sj,m)},m = |Sj|}

Apt [6, p. 9] formalises a CSP P as a set of constraints C and a set of domain expressions
DE :

P = 〈C;DE〉

which allows a more compact definiton.
For instance, our Christmas Tree problem becomes

〈alldifferent(x1 . . . x12),

∀a, b, c : isClique(a, b, c)⇒ xa + xb + xc ≤ 20,

∀d, e : edge(d, e)⇒ |xd − xe| > 1;

x1 . . . x12 ∈ {1 . . . 12}〉

where isClique() and edge() have the obvious meaning for our undirected graph repre-
senting the puzzle.

The Problem → Solution pipeline

Solving a CSP can be done in many ways, but generally the following steps are involved:

Problem
modelling−−−−−→ Model

encoding−−−−−→ Formula
solving−−−−→ Result

This is in some ways analogous to the idea of writing software more generally

Specification
programming−−−−−−−−→ Source code

compiling−−−−−→ Machine code
execution−−−−−→ Application

When considering the “Model” and the “Formula”, there are similarities in terms of
the compromises to be made between readability and expressive power on the one hand
and performance or control on the other.

4

0.2. SAT Solvers

Figure 0.6: Schematic of Savile Row

Savile Row

Peter Nightingale [7] introduced Savile Row, a “modelling assistant” tool which takes a
model written in a high-level language called EssencePrime [8] and can prepare a “tai-
lored” definition for any of a range of possible back-end solvers. In the process of trans-
lating, it can apply various reformulations and optimisations, some of which apply in all
cases, others being target-specific. One exciting aspect is that Savile Row can produce
SAT formulae in the format expected by SAT solvers (dimacs cnf), so the shiniest latest
SAT solver can be employed to perform the (almost) final solving step, before Savile Row
re-constructs the solution into the original EssencePrime format.

In a later paper [9], Nightingale describes in more detail the reformulation steps that
Savile Row employs to make a more compact and efficient model for the back end solver.
This journal paper also provides a very extensive empirical analysis of the effectiveness
of different combinations of reformulations on performance.

To give you an idea of what a problem definition looks like in EssencePrime, Figure
0.7 shows a model that could describe our Christmas Tree problem.

0.2 SAT Solvers

Going back to the analogy of conventional programming, it can help to understand a little
about the back-end solver operation in order to prepare “better” code. A big part of my
learning has been about SAT solvers.

Why SAT solvers as a back end?

The simplicity of the input format means that there are hundreds of SAT solvers available,
and they are being developed all the time, advancing the scale of problem that can be
tackled. Yearly SAT solver competitions are held, inviting contestants to describe their
solver characteristics and to make their solvers open source. The proceedings of recent
SAT competitions [10, 11] are very informative.

5

0.2. SAT Solvers

Figure 0.7: A definition of the Christmas Tree Problem in EssencePrime for Savile Row

The results give useful insights into the approaches that are most productive and
advances in aspects such as parallel searching and in how hybrid algorithms are being
developed.

How do SAT solvers work?

A reminder of the famous Boolean Satisfiability Problem.
Given a propositional formula, can a complete assignment of variables be found such

that the formula is satisfied? For example, the formula

F = (a ∨ ¬b) ∧ (b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)

can be satisfied by the assignment A = {a→ true, b→ false, c→ true}
The most naive approach would be to systematically try out all possible assignments

and declare victory when an assignment satisifes or defeat when all possible assignments
have been tried. Clearly this is potentially a very slow approach.

6

0.2. SAT Solvers

Table 0.1: Rules in DPLL

Original rule Use in SAT solver

I. Rule for the Elimination of One-
Literal Clauses

Unit Propagation or Boolean Con-
straint Propagation

II. Affirmative-Negative Rule Pure Literal Assignment

III. Rule for Eliminating Atomic
Formulas

Not used directly

Backtracking and DPLL

Davis and Putnam [12], working on an automated proof system, introduced a set of rules
by which a formula expressed in Conjunctive Normal Form (CNF) could be simplifed
iteratively to reach a result more quickly.

Together with Logemann and Loveland [13] they then tweaked these rules and pro-
duced a working computer program - the template for the now famous DPLL algorithm.

Their three rules are shown in Table 0.1.
For example, working with the formula

F =(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3)∧
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

(1)

We first look for clauses with a single unassigned literal, or for “pure literals”. We
find none at first, so we make a choice... let’s start with A = {x1 → 0}, giving us a new
formula:

F =(0 ∨ x2 ∨ x3) ∧ (0 ∨ x2 ∨ ¬x3) ∧ (0 ∨ ¬x2 ∨ x3)∧
(0 ∨ ¬x2 ∨ ¬x3) ∧ (1 ∨ x2 ∨ x3) ∧ (1 ∨ x2 ∨ ¬x3)

(2)

Again, no single unassigned literals, so choose another variable. Now A = {x1 →
0, x2 → 0}, leading to:

F =(0 ∨ 0 ∨ x3) ∧ (0 ∨ 0 ∨ ¬x3) ∧ (0 ∨ 1 ∨ x3)∧
(0 ∨ 1 ∨ ¬x3) ∧ (1 ∨ 0 ∨ x3) ∧ (1 ∨ 0 ∨ ¬x3)

(3)

Now as we scan across, we can see a “unit clause” straight away, as the first clause has
just one unassigned literal. We therefore set the value of x3 accordingly, so our assignment
is now A = {x1 → 0, x2 → 0x3 → 1 and our formula becomes:

F =(0 ∨ 0 ∨ 1) ∧ (0 ∨ 0 ∨ 0) ∧ (0 ∨ 1 ∨ 1)∧
(0 ∨ 1 ∨ 0) ∧ (1 ∨ 0 ∨ 1) ∧ (1 ∨ 0 ∨ 0)

(4)

We now have a problem - the current assignment has made the second clause “empty”
or unsatisfiable, so we backtrack, undoing the last variable choice. Remember that
x3 → 1 has been set by unit propagation, not as a choice. So we undo the assignment
x2 → 0 and any unit propagation that followed. We now assign x2 → 1 and have:

F =(0 ∨ 1 ∨ x3) ∧ (0 ∨ 1 ∨ ¬x3) ∧ (0 ∨ 0 ∨ x3)∧
(0 ∨ 0 ∨ ¬x3) ∧ (1 ∨ 1 ∨ x3) ∧ (1 ∨ 1 ∨ ¬x3)

(5)

7

0.2. SAT Solvers

The only unsatisfied clauses are the third and fourth; unit propagation will set x3 → 1
for the third clause but then fail on the fourth clause. So, we backtrack all the way to
our choice of x1 and change our assignment to x1 → 1, giving us:

F =(1 ∨ x2 ∨ x3) ∧ (1 ∨ x2 ∨ ¬x3) ∧ (1 ∨ ¬x2 ∨ x3)∧
(1 ∨ ¬x2 ∨ ¬x3) ∧ (0 ∨ x2 ∨ x3) ∧ (0 ∨ x2 ∨ ¬x3)

(6)

Nothing can unit propagate yet, so we choose x2 → 0 (as before) and obtain:

F =(1 ∨ 0 ∨ x3) ∧ (1 ∨ 0 ∨ ¬x3) ∧ (1 ∨ 1 ∨ x3)∧
(1 ∨ 1 ∨ ¬x3) ∧ (0 ∨ 0 ∨ x3) ∧ (0 ∨ 0 ∨ ¬x3)

(7)

We observe the same issue as before: a conflict in the final two clauses. If we backtrack
and change our assignment for x2, we finally satisfy all our clauses, and the assignment
to x3 makes no difference:

F =(1 ∨ 1 ∨ x3) ∧ (1 ∨ 1 ∨ ¬x3) ∧ (1 ∨ 0 ∨ x3)∧
(1 ∨ 0 ∨ ¬x3) ∧ (0 ∨ 1 ∨ x3) ∧ (0 ∨ 1 ∨ ¬x3)

(8)

Learning clauses, GRASP, CDCL

The DPLL algorithm uses chronological backtracking which means undoing the last vari-
able choice, but this can often lead to a blockage in the same clause later on, which was
not dependent on that particular assignment.

Silva and Sakallah introduced GRASP [14], a solver which used Conflict-Driven Clause
Learning. All the modern winning SAT solvers use the CDCL method, which again uses
unit propagation to make assignments which follow logically. This time, when a conflict
occurs, the algorithm has a diagnosis step which tries to figure out which combination
of assignments is blocking the formula - a new clause is then created which avoids fail-
ing at the same stage again. The algorithm then uses “back-jumping” to undo several
assignments - back to the most recent assignment which caused the conflict.

CDCL uses an implication graph to help work out which assignments caused the
conflict and to generate a new learnt clause.

Figure 0.8 shows how the assignments are represented using an implication graph in
[14].

In fact there are a lot more details to how these solvers work, including:

• throwing away a lot of learned clauses to avoid being slowed down by a huge formula,

• variable choice heuristics, and

• re-starts (throwing away all assignments, but keeping the learnt clauses).

Importance of unit propagation

In both of these cases, the main driving force is unit propagation. This is very important
when it comes to representing problems in CNF in a way that SAT solvers can make the
most of. For example, keeping clauses short means that once a variable in the clause is
assigned (without satisfying the clause), another implication follows sooner.

8

0.3. SAT Encodings

Figure 0.8: An implication graph created by unit propagation leading to a conflict

0.3 SAT Encodings

So we come to the focus of my research area. As we’ve seen, SAT solvers generally expect
a formula in Conjunctive Normal Form (CNF). The usual file format is the DIMACS CNF
standard.

We need therefore a method to translate our problem with its variables and constraints
into an instance of SAT.

Not all is true or false

Non-boolean variables need to be represented as booleans. There are basic rules that
can be applied, e.g. integers can be encoded using a unary encoding (e.g. a = 6 where
a ∈ {0 . . . 15} would be represented by a0 = 0, a1 = 0, . . . , a6 = 1, . . . , a15 = 0) or a binary
encoding.

Naive encoding

If we limit ourselves to propositional logic, then any formula can be easily translated
into Conjunctive Normal Form by using DeMorgan’s laws and distributive laws, replacing
implication and simplifying double negation, as follows:

¬(a ∨ b) −→ ¬a ∧ ¬b
¬(a ∧ b) −→ ¬a ∨ ¬b

a ∨ (b ∧ c) −→ (a ∨ b) ∧ (a ∨ c)
a⇒ b −→ ¬a ∨ b
¬¬a −→ a

9

0.3. SAT Encodings

Figure 0.9: A basic example of the Tseitin encoding from Decision Procedures [16, pp.
12–13]

Tseitin’s encoding

However, using these rules naively can lead to very large formulae. Tseitin [15] introduced
an encoding which used additional variables but cut the size of the resulting formula. The
original and new formulae are equisatisfiable, i.e. one is satisfiable iff the other one is.
[16] gives a simple example to illustrate this process, shown in Figure 0.9.

This is a useful start to thinking about more concise encodings. A lot of work has
gone into developing encodings for particular constraints.

Encoding constraints specifically

Our focus is on implementing constraints - we’ve already seen the allDifferent constraint
in our Christmas Tree puzzle to ensure no variable is assigned the same value. Many
other constraints exist. Beldiceanu and colleagues set up a catalogue of global constraints
[17] with hundreds of entries.

Our own Alan Frisch conducted a review [18] of some of the encodings available at
the time for the “at-most-k” constraint - in this paper the encodings are discussed and
empirically compared on a range of problems. More recently, an example of work in
this area is [19], which takes four different encodings of the “Pseudo-boolean” constraints
(more on this later) and combines them with the At-Most-One constraint to obtain four
new encodings which are then tested and compared. Significant reductions in the size of
the encodings are made when these constraints are combined.

10

0.3. SAT Encodings

Figure 0.10: The binary tree for the Totalizer encoding

Figure 0.11: The binary tree for the Generalized Totalizer encoding

An example of development in representing constraints

To give an idea of how an encoding is built upon, here is an example of a line of enquiry
or development.

The “totalizer/comparator” encoding [20] was conceived as a way to implement a
cardinality constraint, i.e. given a set of decision variables e1, . . . en, constrain the number
of variables set to true to a range of values between µ and ρ inclusive. This is achieved
by building a binary tree (Figure 0.10) and propagating the number of “true” variables
up the tree. At the root node, the total is checked against the limits of the constraint.

This scheme was then used in [21] to encode the “Pseudo-boolean” constraint. This
constraint is over a set of decision variables and their associated “weights”, so that

w1l1 + w2l2 + . . .+ wnln ≤ k

The binary tree used in the totalizer was now slightly modified (see Figure 0.11) to
account for the weights and thus the “Generalized Totalizer” encoding was born.

In 2019, Bofill et al. published a paper in which they combined the At-Most-k con-
straint with the Pseudo-boolean constraint – they considered four different encodings for
the PBC and adapted each one to take into account a partition on the decision variables

11

0.4. Applying Machine Learning

Figure 0.12: The binary tree for the GGT encoding

such that only one variable was allowed to be true in each “AMO group”. One of the four
results was then the Generalized Generalized Totalizer encoding. Figure 0.12 shows how
the tree is collapsed to reduce the number of variables requried.

What’s in an encoding?

Size but also propagability. As Bailleux et al. [22] state,

Obviously, all things being equal, the more a solver propagates, the more
efficient it is. On the other hand, encodings which UP-maintain GAC generally
produce larger formulae than the other ones because they must encode each
potential implication of a literal. Of course, larger formulae slow down unit-
propagation. It is then not always clear which is the best trade-off between
the size of encodings and their ability to enforce propagations.

0.4 Applying Machine Learning

Expert choices

How a problem is modelled and subsequently encoded can make a huge difference to the
feasability of finding a solution. The idea of this PhD project is to see if we can machine
learn how to make these choices.

I have found some interesting applications of machine learning to the type of process
we’re interested in.

A review of portfolio solvers

In [23], we have a survey paper which considers many attempts to select the best search
algorithm to be applied to combinatorial problems. There are many interesting aspects
to bear in mind:

12

0.5. Possible Direction for PhD

• The make-up of the portfolio of algorithms - how does one choose which algorithms
are worthy of inclusion?

• The scoring of the algorithms? The portfolio as a whole can be considered, with
ML predicting the best algorithm, or each algorithm can be scored such that the
prediction is its performance.

• Should one algorithm only be chosen for a problem, or should we hedge our bets
and schedule different algorithms to work on the problem according to some time
allocation scheme? Algorithms can also be set off in parallel, again choosing a
distribution according to some scoring method.

• Some approaches were offline, i.e. the problem was presented, the algorithm was
chosen and then the solving began; in other cases, the algorithm choice was being
made and reviewed as the problem was being solved.

SATZilla [24] is perhaps the most famous example of a portfolio solver, making use of
third-party SAT solvers and selecting them per problem instance. Portfolio-based SAT
solvers have been banned from the recent SAT races as they’re deemed to reduce the
incentive to improve the individual solvers themselves.

Two-step (hierarchical) approach

Peter suggested I look at Barry Hurley’s PhD thesis [25] which makes several interesting
contributions.

He proposed and implemented a “hierarchical portfolio”, making choices in different
stages: first, deciding between a CSP representation and a SAT representation; then
choosing different SAT encodings; finally choosing which solver to employ.

He also makes an interesting observation that many modern SAT solvers involve ran-
domness and therefore it is possible that when running the same solver on the same
problem you can get wildly different results - this is something to consider when training.

In-solver ML

Earlier we saw that modern CDCL SAT solvers learn new clauses based on conflict di-
agnosis. These learnt clauses can soon become so numerous that they slow down the
operation, so they are regularly culled. Mate Soos [26] uses machine learning to identify
which learnt clauses are least likely to be used again later on. These can then be dis-
carded. His clause-selection algorithm is implemented as a C++ library which can then
be called by the SAT-solver. This approach shows promise, especially as the training data
they used can be greatly expanded.

0.5 Possible Direction for PhD

Automating choices

The current plan is to attempt to automate some of the choices made in Savile Row.
As mentioned previously, in [9] Savile Row is able to apply some reformulations which
can in some cases dramatically reduce the size of the resulting encoding and lead to big
performance gains. However, for some problem instances the reformulation does not lead

13

0.5. Possible Direction for PhD

to performance improvements and can indeed slow down the process. Currently, these
reformulations are manually switched on or off. Savile Row also allows the user to make
other choices, such as which SAT encodings to use for certain constraints. The goal
is to use ML to automate these switches (or at least to make suggestions), so that a
prediction is made as to which combination of reformulations and encodings will give the
best performance.

Objective significance of encoding

Every paper which introduces a new SAT encoding tends to show off improved solving
prowess often on a range of benchmark problems. Without casting aspersions on the
authors, it’s difficult to say in general whether that particular encoding is “the best” – it
may be that different encodings are more successful for different problem instances. So
I would like to investigate this effect thoroughly, across a wide range of problems and
specifically to look at how combinations of constraints in problems are associated with
the performance of different encodings.

14

Bibliography

[1] H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos, “Local search and
constraint programming for the post enrolment-based course timetabling problem,”
vol. 194, no. 1, pp. 111–135.

[2] C. Anstegui, M. Bofill, J. Coll, N. Dang, J. L. Esteban, I. Miguel, P. Nightingale,
A. Z. Salamon, J. Suy, and M. Villaret, “Automatic detection of at-most-one and
exactly-one relations for improved SAT encodings of pseudo-boolean constraints,”
in International Conference on Principles and Practice of Constraint Programming,
pp. 20–36, Springer.

[3] M. Järvisalo, “Boolean Satisfiability and Beyond: Algorithms, Analysis and AI Ap-
plications,” in Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, pp. 4066–4069, AAAI Press.

[4] J. Berg, M. Järvisalo, and B. Malone, “Learning optimal bounded treewidth Bayesian
networks via maximum satisfiability,” pp. 86–95.

[5] M. Hořeňovský, “Performance analysis of a master-key system solver.”

[6] K. Apt, Principles of Constraint Programming. Cambridge University Press.

[7] P. Nightingale, Akgün, I. P. Gent, C. Jefferson, and I. Miguel, “Automatically
improving constraint models in Savile Row through associative-commutative common
subexpression elimination,” in International Conference on Principles and Practice
of Constraint Programming, pp. 590–605, Springer, Springer, 2014.

[8] P. Nightingale and A. Rendl, “Essence’ Description,” vol. abs/1601.02865.

[9] P. Nightingale, Akgün, I. P. Gent, C. Jefferson, I. Miguel, and P. Spracklen, “Auto-
matically improving constraint models in Savile Row,” vol. 251, pp. 35–61.

[10] M. J. Heule, M. J. Järvisalo, M. Suda, et al., Proceedings of SAT Competition 2018.
Department of Computer Science, University of Helsinki.

[11] M. J. H. Heule, M. Järvisalo, and M. Suda, “Proceedings of SAT Race 2019 : Solver
and Benchmark Descriptions,” vol. B-2019-1.

[12] M. Davis and H. Putnam, “A computing procedure for quantification theory,” vol. 7,
no. 3, pp. 201–215.

[13] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-
proving,” vol. 5, no. 7, pp. 394–397.

15

Bibliography

[14] J. M. Silva and K. Sakallah, “GRASP-A new search algorithm for satisfiability,” in
Proceedings of International Conference on Computer Aided Design, pp. 220–227,
IEEE.

[15] G. S. Tseitin, “On the complexity of derivation in propositional calculus,” in
Leningrad Seminar on Mathematical Logic, pp. 115–125.

[16] D. Kroening and O. Strichman, Decision Procedures. Springer.

[17] N. Beldiceanu, S. Demassey, M. Carlsson, and J.-X. Rampon, “Global Constraint
Catalog.”

[18] A. M. Frisch and P. A. Giannaros, “Sat encodings of the at-most-k constraint. some
old, some new, some fast, some slow,” in Proc. of the Tenth Int. Workshop of Con-
straint Modelling and Reformulation, p. 36.

[19] M. Bofill, J. Coll, J. Suy, and M. Villaret, “SAT encodings of pseudo-boolean con-
straints with at-most-one relations,” in International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 112–
128, Springer.

[20] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of boolean cardinality con-
straints,” in Principles and Practice of Constraint Programming – CP 2003 (F. Rossi,
ed.), pp. 108–122, Springer Berlin Heidelberg.

[21] S. Joshi, R. Martins, and V. Manquinho, “Generalized totalizer encoding for pseudo-
boolean constraints,” in Principles and Practice of Constraint Programming (G. Pe-
sant, ed.), pp. 200–209, Springer International Publishing.

[22] O. Bailleux, Y. Boufkhad, and O. Roussel, “New encodings of pseudo-boolean con-
straints into CNF,” in Theory and Applications of Satisfiability Testing - SAT 2009
(O. Kullmann, ed.), pp. 181–194, Springer Berlin Heidelberg.

[23] L. Kotthoff, “Algorithm selection for combinatorial search problems: A survey,”
in Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary
Approach (C. Bessiere, L. De Raedt, L. Kotthoff, S. Nijssen, B. O’Sullivan, and
D. Pedreschi, eds.), pp. 149–190, Springer International Publishing.

[24] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based
algorithm selection for SAT,” vol. 32, pp. 565–606.

[25] B. Hurley, “Exploiting machine learning for combinatorial problem solving and op-
timisation.”

[26] M. Soos, R. Kulkarni, and K. S. Meel, “CrystalBall: Gazing in the black box of SAT
solving,” in International Conference on Theory and Applications of Satisfiability,
vol. 22, pp. 371–387.

16

