Felix Ulrich-Oltean

Supervised by **Peter Nightingale, James Cussens, James Walker**

PhD student @ University of York

fvuo500@york.ac.uk, twitter.com/FelixVUO, felixvuo.github.io

Working on

Learning SAT Encodings for Individual Constraints

Supported by grant EP/R513386/1 from the UK Engineering and Physical Sciences Research Council.

What's in store

Motivation: Why SAT?

Encoding to SAT, an example

Preliminary experiments

Learning the best encodings

The talk is based on my <u>Research Summary Paper</u> submitted to the Doctoral Programme at <u>CP2020</u>. My thanks go to the peer reviewers for their helpful, actionable comments.

Why SAT?

Rank	Solver	#solved	Detail	%inst.	%VBS	
Total number of instances: 300						
	Virtual Best Solver (VBS)	272	177 SAT, 95 UNSAT	91%	100%	
1	PicatSAT	245	163 SAT, 82 UNSAT	82%	90%	
2	Fun-sCOP hybrid+CryptoMiniSat	209	132 SAT, 77 UNSAT	70%	77%	
3	Fun-sCOP hybrid+ManyGlucose	198	121 SAT, 77 UNSAT	66%	73%	
4	Fun-sCOP order+ManyGlucose	192	122 SAT, 70 UNSAT	64%	71%	
5	Fun-sCOP order+GlueMiniSat	190	122 SAT, 68 UNSAT	63%	70%	
6	AbsCon	167	114 SAT, 53 UNSAT	56%	61%	
7	Concrete	156	106 SAT, 50 UNSAT	52%	57%	
8	choco-solver parallel	153	113 SAT, 40 UNSAT	51%	56%	
9	choco-solver	149	101 SAT, 48 UNSAT	50%	55%	
10	BTD	135	84 SAT, 51 UNSAT	45%	50%	
11	cosoco	126	82 SAT, 44 UNSAT	42%	46%	
12	cosoco parallel	121	86 SAT, 35 UNSAT	40%	44%	

Why SAT? Encoding Experiments Learning

From the Presentations of Results of the XCSP 2019 Constraint Solver Competition <u>http://www.cril.univ-artois.fr/XCSP19/files/resultsXCSP3-19.pdf</u>, organised by the creators of XCSP3 <u>http://www.xcsp.org/</u>

Why SAT?

SAT Competition Winners on the SC2020 Benchmark Suite

Encoding Experiments Learning

Why SAT?

The SAT Competition 2020 problems run on the winning solvers in previous years, <u>http://fmv.jku.at/kissat/</u> (thanks to Armin Biere)

Encoding to SAT: an example

```
language ESSENCE' 1.0
given upbound : int
```

```
given mincard : int
given weights : matrix indexed by [int(1..n)] of int
```

```
letting VARS be domain int(1..n)
```

```
find config : matrix indexed by [VARS] of bool
```

```
$ the pseudo-Boolean sum constraint
such that upbound >= (sum i : VARS . config[i]*weights[i]),
```

```
$ one more constraint otherwise the solution is trivial
sum(config) >= mincard
```


Why SAT? Encoding Experiments Learning

LEFT: An Essence Prime model for a simple knapsack-like problem with a single pseudo-Boolean sum constraint

RIGHT: The beginning of a Boolean SAT formula in DIMACS format, as produced by Savile Row from the Essence Prime model. The formula essentially begins ($\neg x_1 V x_1 \rangle$) ($\neg x_1 V x_1 \rangle$) ($\neg x_1 \rangle$

Encoding a Constraint

An extract from a SAT encoding description for a pseudo-Boolean sum constraint.

Diagrams and clauses for the "Generalized Totalizer" from *Bofill, Coll, Suy, Villaret: SAT Encodings of Pseudo-Boolean Constraints with At-Most-One Relations,* in CPAIOR 2019 <u>https://doi.org/10.1007/978-3-030-19212-9_8</u> Why SAT? **Encoding** Experiments Learning

Encoding a Constraint

	enc.	$\mathbf{Q1}$	\mathbf{med}	$\mathbf{Q3}$	\mathbf{avg}	t.o.	v.	cl.	g.t.
$\operatorname{Set1}$	BDD	14.00	17.59	t.o.	219	158	857	1714	35.6
	SWC	10.51	14.12	t.o.	199	144	1100	2177	17.2
	GT	—		_					_
	GPW	0.93	0.97	23	114	85	5.9	77	0.8
$\operatorname{Set2}$	BDD	4.29	5.65	133	141	96	57	115	2.0
	\mathbf{SWC}	4.10	5.41	138	140	95	68	135	1.3
	\mathbf{GT}	5.33	6.94	182	154	110	10	1640	18.0
	GPW	0.46	0.48	11	108	77	3.5	42	0.4
$\mathbf{Set3}$	BDD	215	t.o.	t.o.	423	218	4.8	9.6	0.7
	\mathbf{SWC}	247	t.o.	t.o.	429	227	6.0	12	0.6
	GT	240	t.o.	t.o.	427	223	1.3	31	1.6
~	GPW	172	t.o	t.o	415	229	0.8	5.1	0.3

Why SAT? **Encoding** Experiments

Learning

Performance summary from Bofill, Coll, Suy, Villaret: SAT Encodings of Pseudo-Boolean Constraints with At-Most-One Relations, in CPAIOR 2019 https://doi.org/10.1007/978-3-030-19212-9_8

Preliminary Experiments

Why SAT? Encoding **Experiments** Learning

Distributions of weights/coefficients for generated instances - instances with 64 variables shown here.

Preliminary Experiments

Performance by clustering

Why SAT? Encoding **Experiments** Learning

As we vary the amount of *clustering*, the relative performance of the encodings changes (clustering = 0 means weights are completely randomly spread, 1 means all the weights are in clusters)

Learning: Features

\$ mzn2feat -P ======= CONSTRAINT FEATURES (27) ========= c_avg_domdeg_cons...Avg of the ratio constraints domain/degree c_sum_ari_cons.....Sum of constraints arity ======= DOMAIN FEATURES (18) ======== d_array_cons.....No. of array constraints d_int_cons.....No. of integer constraints ======= GLOBAL CONSTRAINT FEATURES (4) ========= gc_diff_globs.....No. of different global constraints ======= OBJECTIVE FEATURES (8) ======== o_deg.....Degree of the objective variable v_def_vars.....Number of defined variables v_min_domdeg_vars...Minimum of the ratio variables domain/degree

Why SAT?

Encoding

Experiments

Learning

A small sample of the features extracted by the mzn2feat/fzn2feat tool which operates on minizinc or flatzinc files. With thanks to Roberto Amadini for the project at <u>https://github.com/CP-Unibo/mzn2feat</u>

Learning: First Steps

Why SAT?	support	f1-score	recall	precision	
Encoding	3	0.57	0.67	0.50	ggt
	2 5	0.67 0.60	0.50 0.60	1.00 0.60	gpw mdd
Experiments	2 4	0.40 0.57	0.50 0.50	0.33 0.67	swc tree
Learning	16	Q 56			accuracy
	16	0.56	0.55	0.62	macro avg
	16	0.57	0.56	0.61	weighted avg

The plan...

Why SAT?

Encoding

Experiments

Learning