
Selecting SAT Encodings for Pseudo-
Boolean and Linear Integer Constraints

Felix Ulrich-Oltean (felix.ulrich-oltean@york.ac.uk), Peter Nightingale, James Walker

WHY?
•How we represent a problem is important.
•Some constraints have many SAT encodings avail-
able, but it’s hard to choose the best one for a CSP.
•Machine learning can help us make a good choice.

WHAT?
•We implement and evaluate an ML approach to pre-
dicting good SAT encodings of Pseudo-Boolean and
Linear Integer constraints.
•We introduce new constraint-specific features.
•We calculate and discuss feature importance.

HOW?
•Prepare a varied corpus of instances from many dif-
ferent problem classes.
•Create a reduced-size portfolio of encoding config-
urations across the two constraint types.
• Train random forest classifiers on pairs of configu-
rations, then vote at prediction time.

SO?
•We narrowed the gap between Single Best and
Virtual Best by up to 38% for unseen problem
classes and 54% for seen classes.

0 200 400 600 800
Mean Time (sec)

VB
Def
SB

lipb
combi

Split by instance

0 500 1000 1500
Mean Time (sec)

Split by class

Distribution of run times across 50 cycles of split, train, predict

•Our new features made selection more robust, with
fewer timeouts.

0.0 2.5 5.0 7.5 10.0 12.5
of timeouts

VB
Def
SB

lipb
combi

Split by instance

0 10 20 30
of timeouts

Split by class

Distribution of timeouts across 50 cycles of split, train, predict

•We greatly outperformed AutoFolio [2], a sophisti-
cated Algorithm Selection and Configuration tool.

Reference Prediction
VB SB Def AutoFolio Our ML

1.00 21.91 18.99 20.01 13.75

PAR10 mean predicted times relative to Virtual Best, using libp features

Why Solve CSPs with SAT?

Most recent CSP solving compe-
titions have been won by solvers
which encode to SAT (see the
MiniZinc Challenge and the XCSP
competition). We can also con-
tinue to benefit from advances in
SAT solving. The plot (right) from
fmv.jku.at/kissat shows that SAT
solvers are able to solve more
problems year-on-year. 0 1 000 2 000 3 000 4 000 5 000

0

50

100

150

200

250

CPU time

so
lv

ed
in

st
a
n
ce

s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020

maple-lcm-disc-cb-dl-v3-2019

maple-lcm-dist-cb-2018

maple-lcm-dist-2017

maple-comsps-drup-2016

lingeling-2014

abcdsat-2015

lingeling-2013

glucose-2012

glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008

berkmin-2003
minisat-2006
rsat-2007

satelite-gti-2005

zchaf-2004

limmat-2002

data produced by Armin Biere and Marijn Heule

What is a SAT Encoding?

A SAT encoding is a scheme to produce a Boolean (SAT) formula which represent a
CSP, or part of a CSP. Encodings use di�erent structures to represent the underlying
constraint, setting the SAT variables accordingly to ensure that the SAT clauses are
satisfied if and only if the original CSP constraint is satisfied.

We focus on pseudo-Boolean and linear integer constrains, using the GGT, GGPW, GSWC
and MDD encodings [1], as well as Savile Row’s default Tree encoding [3].

How is Pairwise Training Made Feasible?

With 25 configuration options (5 PB × 5 LI), we
would need to train

(
25
2

)
= 300 classifiers. This

quickly grows infeasible with more constraint
types, and more choices of encoding. We grow a
portfolio of configurations by adding in choices
which reduce the VB runtime the most. The plot
below shows that with 5 configurations, we can
get within 14% of the performance achievable
with the full set of encodings.

0 5 10 15 20 25

Portfolio size

1.0

1.5

2.0

2.5

3.0

P
A

R
2

/
V

B

GGPW Tree
GGPW GGPW
Tree GGPW
GSWC GGPW
GGT MDD

PAR2 runtime as proportion of Virtual Best
for di�erent sized portfolios

Which Features Matter?

Generic instance features enable good predictions which outperform the single best
choice of encodings from the training set. But the introduction of features specific to
PB/LI constraints gives better results, with a lower mean runtime and fewer timeouts.

The plot below shows the 10 most important features in the specialised lipb featureset
and the combi featureset which additionally contains the generic features. We see
that both generic and specialised features (prefixed li_ and pb_) are used by the ML
classifier in equal measure.

0 1000 2000 3000

Cost (seconds)

pb n med
li amo mn

pb n ent
pb amo mn
li wsum iqr

li asize r2n mn
li iqr skew

pb wsum iqr
li k iqr
li k mn

F
ea

tu
re

lipb features, split by class

−1000 0 1000

Cost (seconds)

pb n sum
d ratio bool vars

v num vars
li wsum skew

d ratio int vars
li asize r2n mn

o deg std
pb asize mn mn
v ent dom vars

pb count

combi features, split by class

Permutation feature importance over 50 split-train-predic cycles

Find Out More

Go to https://felixvuo.github.io or scan the QR code for:
• the full paper
• the data for the experiments
• getting in touch

We used the Savile Row modelling assistant. More details and
software at savilerow.cs.st-andrews.ac.uk.

References

[1] Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. SAT encodings of pseudo-boolean constraints with
at-most-one relations. In International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pages 112–128. Springer, 2019.

[2] Marius Lindauer, Holger H. Hoos, Frank Hutter, and Torsten Schaub. AutoFolio: An Automatically Config-
ured Algorithm Selector. Journal of Artificial Intelligence Research, 53:745–778, August 2015.

[3] Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Je�erson, Ian Miguel, and Patrick Spracklen.
Automatically improving constraint models in Savile Row. Artificial Intelligence, 251:35–61, October 2017.

mailto:felix.ulrich-oltean@york.ac.uk
https://www.minizinc.org/challenge.html
https://www.minizinc.org/challenge.html
https://xcsp.org/competitions/
https://xcsp.org/competitions/
http://fmv.jku.at/kissat/
https://felixvuo.github.io
https://savilerow.cs.st-andrews.ac.uk/

