
Selecting SAT Encodings for Pseudo-
Boolean and Linear Integer Constraints

Felix Ulrich-Oltean (felix.ulrich-oltean@york.ac.uk), Peter Nightingale, James Walker

WHY?
•How we represent a problem is important.
•Some constraints have many SAT encodings avail-
able, but it’s hard to choose the best one for a CSP.
•Machine learning can help us make a good choice.

WHAT?
•We implement and evaluate an ML approach to pre-
dicting good SAT encodings of Pseudo-Boolean and
Linear Integer constraints.
•We introduce new constraint-specific features.
•We calculate and discuss feature importance.

HOW?
•Prepare a varied corpus of instances from many dif-
ferent problem classes.
•Create a reduced-size portfolio of encoding config-
urations across the two constraint types.
• Train random forest classifiers on pairs of configu-
rations, then vote at prediction time.

SO?
•We narrowed the gap between Single Best and
Virtual Best by up to 38% for unseen problem
classes and 54% for seen classes.
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•Our new features made selection more robust, with
fewer timeouts.
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•We greatly outperformed AutoFolio [2], a sophisti-
cated Algorithm Selection and Configuration tool.

Reference Prediction
VB SB Def AutoFolio Our ML

1.00 21.91 18.99 20.01 13.75

PAR10 mean predicted times relative to Virtual Best, using libp features

Why Solve CSPs with SAT?

Most recent CSP solving compe-
titions have been won by solvers
which encode to SAT (see the
MiniZinc Challenge and the XCSP
competition). We can also con-
tinue to benefit from advances in
SAT solving. The plot (right) from
fmv.jku.at/kissat shows that SAT
solvers are able to solve more
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What is a SAT Encoding?

A SAT encoding is a scheme to produce a Boolean (SAT) formula which represent a
CSP, or part of a CSP. Encodings use di�erent structures to represent the underlying
constraint, setting the SAT variables accordingly to ensure that the SAT clauses are
satisfied if and only if the original CSP constraint is satisfied.

We focus on pseudo-Boolean and linear integer constrains, using the GGT, GGPW, GSWC
and MDD encodings [1], as well as Savile Row’s default Tree encoding [3].

How is Pairwise Training Made Feasible?

With 25 configuration options (5 PB × 5 LI), we
would need to train

(
25
2

)
= 300 classifiers. This

quickly grows infeasible with more constraint
types, and more choices of encoding. We grow a
portfolio of configurations by adding in choices
which reduce the VB runtime the most. The plot
below shows that with 5 configurations, we can
get within 14% of the performance achievable
with the full set of encodings.
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Which Features Matter?

Generic instance features enable good predictions which outperform the single best
choice of encodings from the training set. But the introduction of features specific to
PB/LI constraints gives better results, with a lower mean runtime and fewer timeouts.

The plot below shows the 10 most important features in the specialised lipb featureset
and the combi featureset which additionally contains the generic features. We see
that both generic and specialised features (prefixed li_ and pb_) are used by the ML
classifier in equal measure.
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Find Out More

Go to https://felixvuo.github.io or scan the QR code for:
• the full paper
• the data for the experiments
• getting in touch

We used the Savile Row modelling assistant. More details and
software at savilerow.cs.st-andrews.ac.uk.
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